首页> 外文OA文献 >Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol
【2h】

Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

机译:增强木质纤维素的生物加工:木腐真菌糖化和玉米纤维发酵成乙醇

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of bio-based feedstock to support an economy based on renewable resources is becoming extremely important for generating biofuels and biobased products to reduce nation\u27s dependency on imported petroleum fuels. This research aims at developing a biorefinery platform to convert corn-ethanol co-product, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/ 100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation.The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 oC for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O22 (w/w)], and by steaming at 100 oC for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields.We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei . However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol.To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol.
机译:使用生物基原料来支持基于可再生资源的经济对于生产生物燃料和生物基产品以减少国家对进口石油燃料的依赖变得极为重要。这项研究的目的是开发一种生物精炼平台,将玉米-乙醇副产物玉米纤维在较低的温度下转化为可发酵的糖,同时减少化学药品的使用。本研究使用白腐病菌(Phanerochaete chrysporporium),褐腐病菌(Gloeophyllum trabeum)和软腐病菌(Trichoderma reesei)真菌将玉米纤维的纤维素和半纤维素成分生物分解为可发酵糖。通过原位纤维素分解酶诱导进行实验室规模的同时糖化和发酵(SSF)过程,增强了半纤维素/纤维素从玉米纤维到单糖(单糖,双糖,三糖)的整体酶促水解。当分别用白腐,褐腐和软腐真菌进行糖化时,每100克玉米纤维的酵母水解产物发酵产生7.1、8.6和4.1克乙醇。最高的玉米乙醇产量(8.6 g乙醇/ 100 g玉米纤维)相当于玉米纤维中淀粉和纤维素的理论乙醇产率的42%。在一周的玉米纤维固体底物发酵过程中,还研究了这些真菌的纤维素酶,木聚糖酶和淀粉酶活性。在固体底物发酵的第三天,小球菌对淀粉的活性最高(160 mg葡萄糖/ mg protein.min)。在固体底物发酵的第5天,金孢假单胞菌对木聚糖的活性最高(119 mg木糖/ mg蛋白质。分钟),而在第3天对羧甲基纤维素的活性最高(35 mg葡萄糖/ mg蛋白质。分钟)。在固体底物发酵的第5天,里氏木霉对Sigma细胞20的活性最高(54.8 mg葡萄糖/ mg蛋白.min)。通过真菌过程考察了不同预处理对玉米纤维SSF的影响。玉米纤维在30 oC下用碱[2%NaOH(w / w)],碱性过氧化物[2%NaOH(w / w)和1%H2O22(w / w)]处理2 h,并在100℃下蒸煮保持2小时。温和的预处理可以改善棕腐软腐质SSF的乙醇收率,而白腐腐质和Spezyme CP SSF的乙醇收效却没有改善。我们证明了木质腐烂真菌工艺对木质纤维素材料的糖化是相当可行的。湿磨制得的玉米纤维最好通过软腐真菌里氏木霉的需氧固态发酵而降解为糖。然而,已证明白腐真菌金孢假单胞菌和褐腐真菌小球菌都具有产生其他半纤维素降解酶的能力。来自这些真菌的酶财团可能是木质纤维素糖化的最佳方法。在所有情况下,都需要在淹没条件下进行后续的厌氧酵母过程才能将释放的糖发酵为乙醇。据我们所知,这是首次关于使用白腐烂和棕腐烂的湿磨玉米纤维生产纤维素分解酶的报道。玉米纤维水解物顺序发酵为乙醇的真菌。

著录项

  • 作者

    Shrestha, Prachand;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号